Computational Thinking in Brazil

I’ve been fairly quiet recently, but at least I have a decent excuse.

Way back in November, I was asked to help write a computational thinking scheme of work for some Canadian schools called Maple Bear – confusingly, I was told that the scheme would be deployed in Brazil, but I had great fun working with David Wall on 16 simple activities to promote computational thinking and computer science. David had seen me on Twitter and wanted to work with me and I really enjoyed writing the lesson plans with him.

Fast forward to May this year and David sent me another email to see if I’d be able to travel to Brazil for two weeks of training with Maple Bear. Every year the Brazilian teachers are invited to Central training in July and January (winter and summer break) to learn pedagogical skills for maths, English and science as well as school leadership training and they’d decided that this year they wanted to include computational thinking as one of their core training sessions. David had done a two-day session in the summer (January) with some specially selected participants, but they wanted to open it up to the rest of the teachers for their winter training which meant that I was invited to São Paulo to help out.

logo-mb.jpg

Maple Bear is a really interesting school group – they follow the Canadian curriculum, but don’t have any schools in Canada. From what I could see, they pride themselves on having some of the best and most well-trained staff that they can and the teachers’ passion for their students came across clearly in my sessions. I think that the schools operate as a franchise around the world, but with the majority of them being in Brazil, where they have a reputation for being some of the best schools in the country. To us Brits, it may seem peculiar, but the Portuguese speaking pupils are taught exclusively in English until they reach the age of 7 when some of the teachers deliver their lessons in English, while others deliver in Portuguese. I have to admit to being really impressed with their commitment to delivering top-quality education.

Anyway, my training was planned to be two, two-day sessions in week one at the central training in São Paulo and then two, two-day sessions in individual Maple Bear schools, one in the city of Belo Horizonte, just north of Rio and one way-up in the north-west of Brazil in João Pessoa, a tropical beach-town where winter is characterised by hot weather and torrential rain.

Needless to say, heading out to teach these teachers about Computational Thinking really got me thinking about what we mean by it. I thought about those four key-words that just trip of any CS teachers tongue – Decomposition, Abstraction, Pattern Recognition, Algorithm.

medium.png
Image credit: BBC Bitesize

We call these the cornerstones of computational thinking, but how do we put into words what they actually mean? It’s actually quite difficult to get your head around how to explain abstraction, even when you know what it means, so introducing it to people that are completely unfamiliar with the terms can be quite difficult. For me, I learn best by example and so I immediately thought of activities and examples that would describe these skills, for example, tidying your room is an overwhelming task, but folding your clothes is much less intimidating, or planning to revise for examples over the summer can see terrifying until you break it down into a revision timetable and plan carefully what topic to revise and when.

One of my favourite activities during the training was one I found on code.org – ask the group to add up the numbers 1 to 200 in their heads as quickly as possible, put pressure on them and make them feel stressed. Obviously no one is going to do it, especially if you only give them a few seconds to think about it. Now ask the attendees/students whether anyone actually tried it or whether people gave up – make it clear that it’s ok to have given up.

Now, explain that we are going to decompose the problem by breaking it down a bit. You need to write on the board:

1 + 2 + 3 + .... + 198 + 199 + 200

The next thing we want our users to do is to recognise any patterns in the sum we’ve written up – someone will eventually point out that either you can add 200 + 1 to make 201 repeatedly, or you can add 199 + 1 to make 200 repeatedly.

Now we use abstraction to calculate how many times we’ll need to repeat the sum – depending on whether you’re using 200 or 201, you either need to repeat it 100 times or repeat it 100 times and add 100 one at the end – either way you get 20100 and you’re able to write an algorithm for your sum.

20046576_10158967673480024_1061293103771818250_n

What you’ve done is apply computational thinking to a fairly complex sum in order to calculate it quickly and understand that actually, adding all of the numbers up to 200 is pretty easy.

In fact, on the final set of training in João Pessoa, I started thinking about how you could make the problem more complex and it occurred to me that you could apply the exact same method to adding all of the numbers up to 400, which would then give you the sum 401 x 200, or all of the numbers up to 600 (601 x 300). As you can see, my maths brain got really excited by the application of this puzzle.

For the first day of the training, I wanted to separate the ideas of computer science from computational thinking and so we focused on unplugged computing; I spent weeks searching through the excellent resources on CS Unplugged and Barefoot Computing as well as using the ideas we’d written into our scheme of work. I wanted to focus the training on the teachers having fun as I know that from my experience of Picademy, I was much more enthusiastic about applying what I’d learnt because I’d had time to try it out and play with it myself.

In the second half of the first day, I had planned on demonstrating how you can apply computational thinking to a music lesson by asking students to compose a piece of music and then write a pictorial algorithm for playing it back. As it happened, I’d seen some street performers in São Paulo that really impressed me by playing incredible sounds just using every day objects like bottles and pipes so and so I used this as inspiration for the teachers on the course and asked them to use items in the classroom to create pieces of music.

At each of the four sessions, I was continuously amazed with the musical talent of the teachers, but what I liked even more was how much fun they were clearly all having. It felt like a mask dropping down as the teachers realised that it was ok to relax and enjoy the activity.

At the end of the first day, I was really pleased to be able to talk about some of the people who inspire me and I ended up with three whole pages full of inspiring people from Carrie Anne Philbin to Cerys Lock! I also talked about great software and hardware like Code Club and Raspberry Pi. Check out my slides from the session here.

On the second day of training, the focus was more on software, I spent the morning introducing the teachers to Scratch and the afternoon looking at Active Lit and the amazing Sonic Pi – once again, I focused on keeping the training as fun and as interactive as possible and I love the fact that every single time I introduced Scratch, it was hard work trying to convince the teachers to go on their coffee break because they were having too much fun!! Interestingly, in all four of my sessions, only around 5 teachers in total had ever used Scratch so for most attendees, it was completely new.

I had such an amazing time meeting a diverse range of people in Brazil and I’m grateful to Maple Bear for inviting me over – I hope I get to go back as I was so impressed with how well all of the people on the training absorbed information and demonstrated eagerness to use what they learnt in their schools. I’d be really keen to hear about what lessons they have taught using unplugged suggestions or else introducing Scratch, Sonic Pi or Active Lit. I loved that each teacher seemed to take something different away with them, with some immediately planning unplugged activities, while others were thinking carefully about how to integrate Scratch into their lessons.

IMG_2067.JPG

One of the things that really stood out for me whilst doing this training is that most teachers naturally understand computational thinking, in fact, when you think about the day to day life of a teacher, we are using CT skills on a daily basis without even recognising it. This can be a bit of a trap because we may find ourselves thinkings “oh but I do that already” because the point is that we’re all good teachers because we use computational thinking without thinking. It is a skill that we have developed to become successful, but that doesn’t mean that our students know how to use it; it’s time that we made those implicit skills that make us good teachers explicit for our students’ benefit. We need to make it clear how to use decomposition to make a problem easier to solve or pattern recognition in order to spot how to predict outcomes. We need to make sure that children aren’t growing up with the resilience and toolkit needed to solve the most basic problems.

Our students are not mindless machines, they need to be guided and shown how to help themselves – we can no longer just learn by rote because, as we often quote (or misquote) Richard Riley, the former US director of Education “Education should prepare young people for jobs that do not yet exist, using technology that has not yet been invented, to solve problems of which we are not yet aware”.  How can we confidently prepare our learners for both jobs and technology that does not exist – it’s simple, we can’t, but what we can do is prepare them to be able to cope and to develop the critical thinking skills to manage when a situation is new or unfamiliar. As teachers, we must understand that we are no longer omnipotent and all knowing, there will be pupils, even in the primary school classroom, who know more than we do and that’s ok, because what we do know is how to guide and nurture those students to achieve and become the best that they can… and who knows, maybe one of those pupils will be the one who discovers a cure for cancer, or invents a flying car. Isn’t it nice to know that we were part of that journey?

Travelling to Brazil was an amazing experience and, as a country without any computer science curriculum, I felt honoured to be able to introduce a vision of computer science and computational thinking to around 75 teachers over the course of two weeks; I hope I get to back. Talking to all of the teachers that I met in Brazil really reminded me of why I’m doing all of this and why I love computer science as much as I do. I feel clearer in my own mind about what this journey means to me and what an impact we can make on teachers and students by simply talking about computer science and computational thinking. Thank you Maple Bear for giving me such a wonderful opportunity.

Advertisements

A busy few months

I know you guys love hearing about what I’m up to so here are a few fantastic events that I’ll be appearing it either running workshops or giving talks – it’d be great if you could come along and join in the fun!

Firstly, this weekend I’m taking the pi-top Champions to The National Museum of Computing and Bletchley Park museum for a weekend of training and fun – the most exciting thing about it is that on Sunday 19th the Champions will be running workshops in the National Museum of Computing, showing off exactly why we chose them – I’m so excited about this weekend and hope some of you can join and bring your kids along to what will be an incredible day of opportunities. Let us know you’re coming by signing up here!

tnmoc-logo_3

I’m really excited about the Champions day as I feel like we’re bringing together some of the best of the best when it comes to running workshops, training and all things Raspberry Pi – we’ve picked an amazing team of people for our Champions and I can’t wait to share further details with you all!

I’m looking forward to joining Nic Hughes at the London CAS conference on Saturday 25th February. Nic and I are working together with him leading a Crumble workshop and me leading a Physical Computing Raspberry Pi workshop. It’s always good fun working with Nic and we’re looking forward to inspiring some teachers to innovate their computer science classrooms.

Raspberry Pi is celebrating it’s 5th year at the Junction in Cambridge on 4th and 5th of March and I’ll be there both days and doing a talk on the importance of teaching children to code on Saturday 4th at 1.30. The birthday party is always a great fun community event and tickets can be bought here.

Throughout March and April, I’m running workshops through pi-top for a number of great charitable groups such as STEMSussex, BECSLink and London CLC which will be great fun and I’m hoping to be able to do something for International Women’s Day on 8th March.

</edit> I forgot to mention my own event – Coding Evening for Teachers, in Twickenham on Friday 24th March – tickets are here.</edit>

At the end of March, I’m VERY excited to be attending three incredible events – first up, the NAACE conference in Leicester (28th-29th March), where I’m running not one, but TWO break out sessions – one for pi-top and one talking about the amazing Active Lit as a tool for writing text adventures. Looking at the speaker list, I have a feeling this is going to be a very exciting event and it seems that the people at NAACE are really determined to make it a very successful couple of days.

Next up is PiWars in Cambridge – I’ve always been a big fan of Mike Horne and Tim Richardson, especially their really helpful CamJam EduKits for teaching physical computing with Raspberry Pi so I was incredibly honoured to be asked by them to be a judge at PiWars, an event so popular it’s had to extend to cover two days instead of just one! The blurb for the event describes it as:

logo-v2-rgb-sm

Pi Wars is a challenge-based robotics competition in which Raspberry Pi-controlled robots are created by teams and then compete in various non-destructive challenges to earn points. There are prizes awarded at the end of the day. Last year, we had teams from schools, families and groups of hobbyists and 30 of these teams competed for a full day of robot fun and games! Pi Wars takes place in Cambridge, UK and is open to anyone from around the world. It is run by the same team that organises the Cambridge Raspberry Jam.

How much fun does that sound? There are still spectator tickets available if you want to bring your children or even your class up to inspire them to create their own robots and one of the two days is dedicated entirely to schools and youth groups!

Following on the heels of PiWars is ATI 2017 in Malvern. Primarily an Apple event, this year ATI has extended to include some more general computer science skills, particularly Raspberry Pi and the lovely Joe Moretti asked me to suggest some workshops. I feel like a bit of an interloper seeing my name surrounded by some of the big names in Apple Education, but I’m really excited about offering some Physical computing and Minecraft hacking information for some teachers, most of whom will be completely new to Raspberry Pi and then entire Pi ecosystem. ATI looks like n exciting event and I know that the other presenters are all incredibly inspiring so I’m really glad to be part of the team – there are still tickets available and it’s worth going along just to meet people like Joe, Mark Anderson, Catherine Jessey and Jon Neale, all of whom I’ve seen present before and know are incredibly inspiring!

c4n_svmwaaa5kgf-jpg_large
Photo credit – Mark Anderson @ICTEvangelist/ATI event page

You’d think that’d be enough events, but no… in May, I’ve been invited by the STEM Centre in York to run a ‘Scratch Roadshow‘ taking sessions to Truro, Bristol, Swindon and Reading. This will be an intro to Scratch for primary school teachers who want to build their confidence a little – the best thing about it is that there is a bursary which makes the training completely free so it’s well worth letting your local primary school know if you think they could do with a boost!

Anyway, there are more events later in the year, but that will do for now! I hope you can come along to some of these events and please do come over and say hi – I love meeting you all ‘IRL’. And remember – if you can’t come to any of these events but are still interested in the type of training I can do, please drop me an email cat@crossover.solutions – I offer workshops and CPD training bespoke to your school or group’s needs!

 

Shakey Sense Hat Cat

After Sunday’s coding session, I set the boys the task of making our Scratch Sense Hat Cat Shake, just like Carrie Anne’s Interactive Pixel Pet.

The first thing the boys did was to figure out how to use some of the sensors on the SenseHat – remember how in my other post, I said it was good practice to run the basic broadcast command before you do anything.

screen-shot-2017-02-12-at-19-33-46

We had found some code from Albert’s GitHub page, however, when we tried to select the sensor value for accelerometer, we only had a few choices as shown below.

screen-shot-2017-02-14-at-12-40-30

screen-shot-2017-02-14-at-12-35-53

Luckily, after trying a few things, I suggested that we hit the green flag to check that the GPIO pins were on and that Scratch knew we had a SenseHat attached. When we next checked the sensing options a while heap of new options appeared, including the accelerometer (sorry, I forgot to screenshot it).

The boys had great fun playing with the sensors, but couldn’t quite figure out how to get the ‘shake’ function working so they went back to the original code for Interactive Pixel Pet.

x, y, z = sense.get_accelerometer_raw().values()

while x<2 and y<2 and z<2:      
    x, y, z = sense.get_accelerometer_raw().values()

This is what they come up with:

screen-shot-2017-02-14-at-12-49-01

A job well done, if I do say so!

Now, I’m sure some of you have spotted that I could neaten up my code by removing the ‘ledbackground’ line and that ‘clearleds’ would be better suited to the end of the repeat loop as that would leave me with a completely blank neopixel array at the end of the animation sequence, but otherwise I’m pleased with our work in recreating the pixel pet for Scratch.

I look forward to trying out some of the other sensors using Scratch in the future!

 

Sense Hat Cat using Scratch

So, I absolutely LOVE the Interactive Pixel Pet activity from the Raspberry Pi website, and while I was playing with the Sense Hat the other day, I realised it was possible to imitate it using Scratch. So far I’ve only got it running as an animation, so next step is to get the shake function working as we’ve just figured out how easy it is to use the other sensors on the hat using Scratch.

I had a play and managed to get a very cool dancing cat on my LED matrix – I’m not going to lie, I was super excited and may have run around showing everyone in a slightly excited manner. Fortunately, my colleagues were also excited, although their contributions of dancing ‘poo emojis’ weren’t quite what I had in mind.

screen-shot-2017-02-12-at-19-33-04

Here’s a bit of background on the Sense Hat… for those of you who don’t already know, the Sense Hat was created by the Raspberry Pi Foundation and launched as Astro Pi – a competition to get your pupils’ code into space. It has an 8×8 neopixel array, a mini joystick and a load of amazing sensors like humidity, pressure, gyroscope and accelerometer.

So, the first thing you always need to remember when using Scratch GPIO is that you have to turn on the GPIO server on and, if you’re using a hat, you’ll need to let it know which hat it is by using the command “set AddOn to”.

screen-shot-2017-02-12-at-19-33-46

This is pretty important for anything using the SenseHat and it’s good practice to run it before you go any further in your code as by running it, Scratch will realise you have access to all of the sensors on the hat and allow you to access them through the drop down menu in the blue ‘sensor value’ block.

Firstly you will need to delete the Scratch Cat so that you can draw you own sprite.

screen-shot-2017-02-12-at-19-34-06

In the paint editor, you need to zoom right in as far as you can and select the smallest brush size.

screen-shot-2017-02-12-at-19-34-36

You have four squares in total to draw your image – I’ve shown this here by making the area black (you don’t need to do this, but it can help as ‘black’ represents the neopixel being turned off).

screen-shot-2017-02-12-at-19-35-16

Now you can draw your image – you have exactly 64 pixels to draw with and, as you may have guessed, one pixel on the screen represents one neopixel on the sense hat. By the way, a neopixel is a very bright LED which can be any colour depending on the mix of red green and blue. The lighter your colour, the brighter it will appear on your neopixels so try to avoid dark browns and blues etc.

screen-shot-2017-02-12-at-19-35-42

Next you need to create a second image – you need to use the duplicate command to create a second version of your image.

screen-shot-2017-02-12-at-19-36-05

Then click on the costumes tab to be able to edit it a little bit so that you can make your second sprite slightly different, thus giving the appearance of animation.

screen-shot-2017-02-12-at-20-04-20

Finally, you need some simple Scratch code to get your image moving – I’ve put a couple of broadcast commands in here to clear the SenseHat before you start and to make sure that the background is black (so turned off).

screen-shot-2017-02-12-at-19-36-38

You can experiment if you want by changing the background colour, although this will only make a difference if your sprite is ‘backgroundless’ (but you have to make sure it’s still only 8 pixels/2 squares wide).

screen-shot-2017-02-12-at-20-11-12

I’ve had great fun recreating this project in Scratch and I’ve set Stuart and Kirk on a mission to figure out the ‘shake’ control too so hopefully I can add an update soon.

<edit> Kirk and Stuart have successfully managed to get shake working and are now celebrating with chocolate cake

img_0908

</edit>

Part two of this project can be found here.

All thanks to Albert Hickey for his advice with this project – he is a Scratch and SenseHat guru!!

Watch this space for some more projects using Scratch soon!

A Strange Experience – Being on the Other Side

Since I’ve been working for pi-top, I’ve experienced being on the other side of the EdTech system and it’s certainly been a bit of an eye-opener

I’ve tested various products over the years and found problems and complaints, bugs and surprises, delights and nightmares, but it has been a really interesting experience for me being a producer of content rather than just a consumer.

Firstly, I thought it would be really easy to implement all of the things on my ‘want’ list – it turns out that it’s nowhere near as easy to just ‘add a button that prints out all of the users’ or ‘add a widget that allows the teacher to find out the answer’. All of these things require thought, tweaking of the UI (user interface) and lots of code.

I’ve learnt that things that seem obvious to me are not necessarily useful or even acknowledged by other users.

I’ve learnt that a developer can spend two weeks working overtime to completely overhaul the interface and I’ve not even noticed a difference (sorry).

I’ve discovered that it’s really important to make it clear what the delete button does… and I definitely didn’t accidentally delete a huge chunk of a resource which, thankfully, had been backed up.

I’ve found out that it’s really, really important to get more than one opinion and that relying on mine alone is not enough.

I’ve learnt that developers can’t write resources for beginners even though they really, really mean the best and want to help.

I’ve learnt that even someone like me can make things too difficult for beginners and it’s important to have someone who is truly a novice to try things out.

I’ve found out that sometimes developers just want to sit and watch you use the interface whilst giving them a running commentary so they can figure out what needs to be done next.

I’ve learnt that creating good quality content takes time, creating interfaces takes time and editing information takes time.

I’ve discovered that ‘popping over to ask a quick question’ is akin to tossing an hour’s worth of work into the bin for a developer and it’s better to contact them over Slack.

I’ve found out that developers don’t read emails…

Above all, I’ve learnt that being this side of the interface is HARD WORK and although we sometimes get frustrated with developers bringing out software that doesn’t do exactly what we want it to do, it’s not through lack of trying. It’s pretty important to give developers constructive feedback explaining exactly what doesn’t work as you’d expect and what you’d like it to do instead rather than getting cross and frustrated with it. Communication is vital to ensuring that a product is the best it can be.

Finally, I’ve learnt that pi-topCODER is going to be an incredible resource when we’re done with it and I’m proud to have been part of the team working on it, even if I sometimes feel like I don’t really know anything compared to the people making it!

Swift Playgrounds

It’s about time Apple joined the Coding Revolution – with Raspberry Pi, code.org and Google running projects for years, it was only a matter of time before something was released. And boy is it a good one… with glossy graphics and slick tutorials, Swift Playgrounds has certainly hit the ground running as a way to teach coding concepts to pupils on an iPad. However, it’s not without faults, but then nothing is, so let’s take a look.

A few weeks ago, I visited Apple HQ in London along with a few CAS Master Teachers and various CAS reps and teachers. As it turned out, the majority of attendees were primary school teachers, which brings us to the first flaw in the Swift Playgrounds roll-out. The first thing we were told about it was that it was primarily made for Year 7 pupils and older and this becomes clear when you work through activities as the vocabulary is very dense and would certainly lose many younger pupils. However, the look and feel of the app is very primary-friendly which is why most of the secondary school teachers hadn’t shown an interest, assuming it was ‘not for them’. Indeed, a primary ex-colleague of mine was recently shown Swift Playgrounds and after about ten minutes, decided it would be the perfect way to teach KS2 coding, unaware of its secondary-school target audience. When you spend some time playing through and looking at it, however, you begin to realise that it is indeed best suited to KS3, particularly because of the skills it is highlighting and teaching.

So, you can see very easily just how much effort Apple have put into Swift Playgrounds and how determined they are to make it a useful classroom tool. Not only is there a wealth of content that is easy to download, there are accompanying iBooks full of Keynote presentations, information, progress charts and comparisons to the CSTA standards. Information is made as clear as possible and it is quite fun to play the games. You can explore the current playground challenge by rotating, zooming, changing angle etc. Code is presented in text boxes with lines and phrases of Swift pre-written in them, and it is still drag and drop so that pupils become familiar with the language without having to write it by themselves. This makes coding and debugging easier when they are ready to move on to independent coding. You are also able to select a different character and alter the speed at which your code is run, which adds an element of personalisation.

img_0003   img_0004You can see here the interface for downloading lessons and a selection of the different types of lesson, including one for Hour of Code. There are some interesting resources that are worth exploring as all of them are slick and well made.

 

The first tutorial is called ‘Learn to Code 1’ and it talks you through using the interface from the beginning. img_0005img_0006

At the start of the game, you are limited to a few commands, but as you move through you are offered more commands and, in the second section, you are shown how to create your own commands, or functions.

img_0007

Now, one thing that was picked up on the training that I attended was that the US curriculum for Computer Science places more emphasis on explaining functions than on the word algorithm, which is different to the UK curriculum, where algorithm is considered a core word for coding and function is a later skill to learn. It is worth bearing this in mind as Swift Playground is geared towards the US curriculum. However, this isn’t necessarily a bad thing.

Let’s take a look at the code needed for ‘Four Stash Sweep’, which is approximately halfway through Learn to Code 1, with my solution to the problem included.

My solution is certainly not the most elegant, but it does demonstrate the complexity of some of the easy tasks, I can’t imagine doing this with primary-age pupils without a lot of support – I’ve had to write three functions to make my code more efficient as well as understanding ‘for i in range’ as a loop. Don’t get me wrong, I’m not complaining about the content, but it does make it clear that Apple are right to pitch this as a KS3 resource in spite of it looking like something for the juniors. It is definitely teaching text-based coding concepts, even if you are dragging the blocks of code into place.

A bigger problem lies in its running speed. When I tested it at Apple, it worked really smoothly, everything was simple and easy to use, but of course we were using brand new iPads. In contrast, when I used it at home on an iPad mini 2, it was slow and frustrating at times. The iPad mini 2 is the minimum specification device required to use Swift Playgrounds, along with the iPad Air, meaning that some early-adopting schools are already feeling excluded unless they upgrade their iPads. Perhaps those schools should consider upgrading them, but it is upsetting when there’s no budget to do so.

So, what next?

Apple are marketing Swift Playgrounds as a way to get to grips with Swift, their open-source language which allows users to create apps and content for iOS and macOS. This is very appealing to schools and young people because, let’s face it, who doesn’t want to be the next app-store millionaire. Making learning goal-orientated makes it instantly more fun and so to present to pupils that they could eventually make a real-life app will certainly inspire them to get more interested in learning to code. The fact that when you use Xcode to write Swift, you can use a playground to test your code, is deliberate to draw a link between Swift Playgrounds and the more ‘real’ Xcode environment and is a clever move by Apple, albeit one that confused existing users as to which playground was which. Swift works across multiple systems, including Linux and therefore Raspbian and I look forward to hearing about some Apple/Raspberry Pi crossovers in the future – perhaps we’ll finally see a RPi physical computing project which is controlled from an iPad!

Where does it fit?

My gut instinct is that Swift Playgrounds would be a great tool for a flipped learning environment. Pupils could work through the game in their own time and come to school armed with questions. Teachers could discuss concepts and offer their class challenges based on the skills they’ve practised at home while using the app. I think it is a great tool for KS3 programming and a lovely way to introduce pupils to the world of programming. I would worry about a whole class just sitting and plodding through in the classroom without the teacher bothering to be involved and it would far too tempting to just sit back and let them get on with it which is why I think it would be better suited to independent work outside of the classroom so that the teacher could focus on discussing the skills and developing them in the classroom.

My initial concern that it was a little too restrictive, like Discovery Coding, have been dispelled and I think there is plenty of opportunity for pupils to explore and create once they have learnt the most basic skills. There are some lovely, interesting resources already available (I recommend taking a look at ‘Drawing Sounds’ in the Swift Playgrounds ‘featured’ tab which you can download and play with) and I look forward to exploring and creating my own playgrounds once I’m more confident and perhaps after I’ve worked through all of the ‘Learn to Code’ modules.

 

 

 

 

Headlines about Computer Science

It’s been well over two years since the new computer science curriculum was introduced in the UK. Not that long ago, Roehampton University released its wonderful Annual Computing Education Report 2015 which says clearly, in black and white, that the numbers of pupils taking computing compared to those that took ICT are significantly lower now and, more importantly, the proportion of females has dropped. Newspapers jumped onto headlines exclaiming that we should have stuck with the old ICT curriculum, but that doesn’t address a number of significant issues.

So, let’s look at the lower number of students studying computer science compared to ICT. There are two things to consider here – when I was at school, ICT was seen as a bit of a joke subject: not one that was taken seriously in academic circles. It was a subject where you learnt to use Excel and create a blog, but it was a bit of a ‘soft’ subject. I suspect that a number of the pupils studying ICT were doing so because it didn’t require quite as much work as, say, French GCSE. Let’s compare that to Computer Science – the computer science curriculum is as difficult as learning a new language because you are actually expected to learn a new language, whether that be Python, Ruby or JavaScript; for the controlled assessment, you need to write some code. It is therefore not a soft subject by any measure.

The other thing to consider is that in a number of schools, there is a fear of failure – I have heard no end of stories from teachers who have been told in no uncertain terms that only the ‘top’ mathematicians are even allowed to consider computer science – no school wants to have a drop in the percent of grades A*-C that they can brag about (or whatever the numbers are in the new system). That immediately isolates around three quarters of the pupils. While I agree that there is some correlation between academia and computer science, it is also true that many pupils with dyslexia and ASD are excellent programmers who may not succeed in maths or English, but would, in contrast, perform exceedingly well in a Computer Science GCSE. Why should we exclude pupils that are interested just because they aren’t in the top set for maths? Surely it’s better that a pupil gets a low grade GCSE in CS than get no GCSEs at all?

By the way, I’m not criticising the schools for not being confident enough to allow everyone to study CS at GCSE level. It’s the system that forces them to fear failure and to force their pupils to conform because of that fear of failure. What, then, can we do to fix it?

On top of that, we have that issue of teacher training. Some of the best teachers in the UK for teaching the ICT curriculum are being pushed into teaching computer science without any knowledge of the necessary skills and there is no time nor funding for them to learn. Of course, they’re not going to want difficult or potentially weak children when they are not confident themselves!

Another issue is that the new GCSE assumes that pupils have been learning about algorithms since they were 4 years old and spent most of their school life learning about coding from an early age. Except that most of these pupils have probably learnt ‘a bit of HTML’ in a ‘coding lesson’ in year 9 and that’s about it; you have no idea how many secondary-aged pupils have told me that is their only experience of coding at school… How can we expect them to study at an advanced level when they’ve missed out the easy level? It takes both an excellent student and excellent teacher in order to achieve this feat, so is it any surprise that both numbers studying and grade expectations are dropping?

What about the fall in numbers of girls?

Well, I loved maths at school, but I know I was in a minority – I was the only girl to get an A* in maths GCSE and I was the only girl to study maths and further maths at A-level. Maths is a traditionally boy-heavy subject so if we’re limiting students to top-set maths then yes, that does exclude a lot of girls. However, that’s not the main problem with the subject, let’s be honest…

Computer science has a massive image problem – when you think about programmers, most people will imagine a middle-aged, over-weight man. When we talk about successful people in the industry, most people will list off “Steve Jobs, Bill Gates, Mark Zuckerberg”. So, where are the women? We are seriously lacking in positive female role models who demonstrate a passion for CS and programming even though evidence suggests that women write code equally as good, if not better, than their male counterparts. How many girls out there were put off as teenagers and never really got started – I know I was! I mean, how many schools even have a female computer science teacher?

This is something I’ve been saying in various circles for quite a while, but I really don’t know what the solution is – there are some great people out there like Carrie Anne Philbin from the Raspberry Pi Foundation and groups like the Stemettes and Django Girls, but is that enough? Young women like Yasmin Bey and Cerys Lock are flying the flag for young, female coders, but they’re still not well known enough outside of our community of already-super-enthusiastic people.

My heart feels like the key is in the teacher training. At the school I used to teach at, because of my enthusiasm for coding, my Code Club was 50:50 male:female. The girls were just as excited as the boys and so far three of them have come and talked very eloquently about their coding experiences at Wimbledon Jam. I should point out that only one of the three was a ‘top set’ mathematician, but that didn’t stop the others from being passionate and enthusiastic about learning to code. I was also given the freedom to tailor my curriculum to my resources and my pupils, something not always available to state schools where results are the only thing that matters and pupils are lost in the overwhelming need to achieve.

We need to support the people on the ground level, the teachers in the classroom, to help them to nourish and enthuse both male and female students and to help them to realise that computer science is for anyone who is interested and not just one subset of society.

This isn’t a criticism of the teachers as individuals: they’re doing the best they can. However, without the right training, without the right support, how can we expect teachers in the classroom to fill pupils with a sense of wonder and excitement for CS? Something has to change.

Just so we’re clear: I’m not a feminist. I’m not saying we should be holding girls-only events and pushing a female agenda even if the girls aren’t interested, I just wish that I’d been more supported as a teenager and felt more like coding was something that was socially acceptable for a girl to do, because who knows what might have happened if I had been! I just want us to encourage and foster interest in everyone to ensure that all students get a chance to be the best that they can be, no matter what their gender, ethnicity or background.

One final, happy note – take a look at the new Raspberry Pi Pioneers competition. That’s how you encourage people to get excited about computer science! I look forward to laughing at all of the (intentionally) funny entries and hope lots of young people have fun entering!

*please note this blog reflects my personal views and not those of any company that I represent.